英语巴士网

新元素搭配将提高太阳能电池效率

分类: 英语科普 

In what could be a step toward higher efficiency solar cells, an international team including University of Michigan professors has invalidated(使无效) the most commonly used model to explain the behavior of a unique class of materials called highly mismatched alloys. Highly mismatched alloys, which are still in the experimental stages of development, are combinations of elements that won't naturally mix together using conventional(传统的,常见的) crystal growth techniques. Professor Rachel Goldman compares them to some extent to homogenized(均匀分布的) milk, in which the high-fat cream and low-fat milk that would naturally separate are forced to mix together at high pressure.

New mixing methods such as "molecular beam epitaxy(外延,外延附生) " are allowing researchers to combine disparate(不同的,全异的) elements. The results, Goldman says, are more dramatic than smooth milk.

"Highly mismatched alloys have very unusual properties," Goldman said. "You can add just a sprinkle(少量) of one element and drastically change the electrical and optical properties of the alloy."

Goldman is a professor in the departments of Materials Science and Engineering, and Physics. Her team included other U-M physicists and engineers as well as researchers from Tyndall National Institute in Ireland.

Solar cells convert energy from the sun into electricity by absorbing light. However, different materials absorb light at different wavelengths. The most efficient solar cells are made of multiple materials that together can capture a greater portion of the electromagnetic radiation in sunlight. The best solar cells today are still missing a material that can make use of a portion of the sun's infrared light.

Goldman's team made samples of gallium arsenide(砷化镓) nitride, a highly mismatched alloy that is spiked with nitrogen, which can tap into that underutilized(未充分使用的) infrared radiation.

The researchers used molecular beam epitaxy to coax the nitrogen to mix with their other elements. Molecular beam epitaxy involves vaporizing pure samples of the mismatched elements and combining them in a vacuum.

Next, the researchers measured the alloy's ability to convert heat into electricity. They wanted to determine whether its 10 parts per million of nitrogen were distributed as individual atoms or as clusters. They found that in some cases, the nitrogen atoms had grouped together, contrary to what the prevailing "band anti-crossing" model predicted.

"We've shown experimentally that the band anti-crossing model is too simple to explain the electronic properties of highly mismatched alloys," Goldman said. "It does not quantitatively explain several of their extraordinary optical and electronic properties. Atomic clusters have a significant impact on the electronic properties of alloy films."

If researchers can learn to control the formation of these clusters, they could build materials that are more efficient at converting light and heat into electricity, Goldman said.

"The availability of higher efficiency thermoelectrics(热电的) would make it more practical to generate electricity from waste heat such as that produced in power plants and car engines," Goldman said.

猜你喜欢

推荐栏目