肺鱼运动方式可能改写动物行走进化史
The eel-like body and scrawny(瘦骨如柴的) "limbs" of the African lungfish would appear to make it an unlikely innovator for locomotion(运动) . But its improbable walking behavior, newly described by University of Chicago scientists, redraws the evolutionary route of life on Earth from water to land. Extensive video analysis, published in the Proceedings of the National Academy of Sciences, reveal that the African lungfish can use its thin pelvic limbs(下肢) to not only lift its body off the bottom surface but also propel itself forward. Both abilities were previously thought to originate in early tetrapods(四足动物) , the limbed original land-dwellers that appeared later than the lungfish's ancestors.
The observation reshuffles the order of evolutionary events leading up to terrestriality, the adaptation to living on land. It also suggests that fossil tracks long believed to be the work of early tetrapods could have been produced instead by lobe-finned ancestors of the lungfish.
"In a number of these trackways, the animals alternate their limbs, which suggested that they must have been made by tetrapods walking on a solid substrate," said Melina Hale, PhD, associate professor of Organismal Biology and Anatomy. "We've found that aquatic(水生的) animals with fundamentally different morphologies and that aren't tetrapods could potentially make very similar track patterns."
Lungfish are a popular pet in the paleontological community, treasured for their unique evolutionary heritage.
"The lungfish is in a really great and unique position in terms of how it is related to fishes and to tetrapods," said Heather King, a graduate student and lead author of the study. "Lungfish are very closely related to the animals that were able to evolve and come out of the water and onto land, but that was so long ago that almost everything except the lungfish has gone extinct."
While anecdotes and rumors circulated within the scientific community about the alleged walking behavior of these strange fish, nobody looked systematically at the biomechanics of their locomotion. An African lungfish (Protopterus annectens) kept in the laboratory of study co-author Michael Coates inspired King to study the species' ability to walk on its unusually thin limbs.
King and her colleagues designed a special tank in which the motions of lungfish could be videotaped from the side and below for in-depth analysis. The videos revealed that lungfish commonly use their hind(后部的) , or pelvic(骨盆的) , limbs to elevate their body off the surface and propel themselves forward. Though the forelimbs look similar to the hindlimbs, they were not involved in locomotion, the authors found.
"This is all information we can only get from a living animal," King said. "Because if you were just to look at the bones, like you would with a fossil, you might not ever know these motions could occur."