海岸能源发展新观点
A new Department of Energy research facility could help bring the U.S. closer to generating power from the winds and waters along America's coasts and help alleviate(减轻,缓和) a major hurdle for offshore wind and ocean power development. Will Shaw, an atmospheric scientist at DOE's Pacific Northwest National Laboratory, will describe plans for the facility at an 11:45 a.m. talk today at the 93rd American Meteorological Society Annual Meeting, which runs through Thursday in Austin, Texas.
The Reference Facility for Offshore Renewable Energy will be used to test technologies such as remote sensing designed to determine the power-generating potential of offshore winds and waters. Research at the facility will help verify that the technologies can collect reliable data and help improve those technologies. This knowledge provides potential investors confidence when reviewing offshore development proposals. Questions about the accuracy of offshore data from new measurement technologies have made some investors hesitant to back offshore energy projects.
Current plans are for the facility to be located at the Chesapeake Light Tower, a former Coast Guard lighthouse that is about 13 miles off the coast of Virginia Beach, Va. Scientists representing industry, government and academia are likely to start research at the facility in 2015. Pacific Northwest National Laboratory will shape and prioritize the research conducted there, while National Renewable Energy Laboratory will manage the facility's remodeling and operations.
PNNL will form an interagency(跨部门的) steering committee to determine the facility's research priorities and procedures. Research will primarily focus on offshore wind, but will also include underwater ocean energy and environmental monitoring technologies. Part of NREL's renovation of the former lighthouse will include installing research equipment. Such equipment includes a meteorological tower that reaches 100 meters above sea level, which is the height of offshore wind turbine hubs.
The harsh environment and remote locale of offshore energy sites makes new technologies necessary to assess the power-producing potential of offshore sites. Strong winds and high concentrations of salt, for example, mean data-collecting equipment needs to be heavy duty and extremely sturdy to operate offshore. And while land-based wind assessment is often done by placing meteorological equipment on a tower, the challenges of anchoring similar towers into the ocean floor can increase costs substantially. As a result, offshore energy developers are looking at new ways to gather precise wind measurements at sites of interest.