英语巴士网

月球存水量可能被高估

分类: 英语科普 

The amount of water present in the moon may have been overestimated by scientists studying the mineral apatite(磷灰石), says a team of researchers led by Jeremy Boyce of the UCLA Department of Earth, Planetary and Space Sciences. Boyce and his colleagues created a computer model to accurately predict how apatite would have crystallized from cooling bodies of lunar magma early in the moon's history. Their simulations revealed that the unusually hydrogen-rich apatite crystals observed in many lunar rock samples may not have formed within a water-rich environment, as was originally expected.

This discovery has overturned the long-held assumption that the hydrogen in apatite is a good indicator of overall lunar water content.

"The mineral apatite is the most widely used method for estimating the amount of water in lunar rocks, but it cannot be trusted," said Boyce, who is an adjunct assistant professor in the UCLA College of Letters and Science. "Our new results show that there is not as much water in lunar magma as apatite would have us believe."

The research was published online March 20 in the journal Science on and will be published in a future print edition.

For decades, scientists believed the moon was almost entirely devoid of water. However, the discovery of hydrogen-rich apatite within lunar rocks in 2010 seemed to hint at a more watery past. Scientists originally assumed that information obtained from a small sample of apatite could predict the original water content of a large body of magma, or even the entire moon, but Boyce's study indicates that apatite may, in fact, be deceptive.

Boyce believes the high water content within lunar apatite results from a quirk in the crystallization process rather than a water-rich lunar environment. When water is present as molten rock cools, apatite can form by incorporating hydrogen atoms into its crystal structure. However, hydrogen will be included in the newly crystallizing mineral only if apatite's preferred building blocks, fluorine and chlorine, have been mostly exhausted.

"Early-forming apatite is so fluorine-rich that it vacuums all the fluorine out of the magma, followed by chlorine(氯)," Boyce said. "Apatite that forms later doesn't see any fluorine or chlorine and becomes hydrogen-rich because it has no choice."

Therefore, when fluorine and chlorine become depleted, a cooling body of magma will shift from forming hydrogen-poor apatite to forming hydrogen-rich apatite, with the latter not accurately reflecting the original water content in the magma.

猜你喜欢

推荐栏目