英语巴士网

电子鼻可能成为下一件日常设备

分类: 英语科普 

Researchers at the Texas Analog Center of Excellence (TxACE) at UT Dallas are working to develop an affordable electronic nose that can be used in breath analysis for a wide range of health diagnosis. While devices that can conduct breath analysis using compound semiconductors exist, they are bulky and too costly for commercial use, said Dr. Kenneth O, one of the principal investigators of the effort and director of TxACE. The researchers determined that using CMOS integrated circuits technology will make the electronic nose more affordable. 

CMOS is the integrated circuits technology used to manufacture the bulk of electronics that have made smartphones, tablets and other devices possible. 

The new research was presented Wednesday in a paper titled "200-280GHz CMOS Transmitter for Rotational Spectroscopy and Demonstration in Gas Spectroscopy and Breath Analysis" at the 2016 IEEE Symposia on VLSI Technology and Circuits in Honolulu, Hawaii. 

"Smell is one of the senses of humans and animals, and there have been many efforts to build an electronic nose," said Dr. Navneet Sharma, the lead author of paper, who recently defended his doctoral thesis at UT Dallas. "We have demonstrated that you can build an affordable electronic nose that can sense many different kinds of smells. When you're smelling something, you are detecting chemical molecules in the air. Similarly, an electronic nose detects chemical compounds using rotational spectroscopy." 

The rotational spectrometer generates and transmits electromagnetic waves over a wide range of frequencies, and analyzes how the waves are attenuated to determine what chemicals are present as well as their concentrations in a sample. The system can detect low levels of chemicals present in human breath. 

Breaths contain gases from the stomach and that come out of blood when it comes into contact with air in the lungs. The breath test is a blood test without taking blood samples. Breath contains information about practically every part of a human body.

The electronic nose can detect gas molecules with more specificity and sensitivity than Breathalyzers, which can confuse acetone for ethanol in the breath. The distinction is important, for example, for patients with Type 1 diabetes who have high concentrations of acetone in their breath.

猜你喜欢

推荐栏目